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Bachelor of Arts (B.A.) Part—I First Semester Examination

MATHEMATICS

(M2 : Calculus)

Optional Paper—II

Time : Three Hours] [Maximum Marks : 60

N.B. :— (1) Solve all the five questions.

(2) All questions carry equal marks.

(3) Question Nos. 1 to 4 have an alternative. Solve each question in full or its alternative in

full.

UNIT—I

1. (A) By using (∈ – δ) definition of limit, show that :
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(B) Discuss the continuity of the function :
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at x = 1 and x =2. 6

OR

(C) If f is finitely derivable at C, then prove that f is also continuous at C. Give an example to show
that its converse is not true. 6

(D) If y = ea sin–1x, then show that

(1 – x2)yn + 2 – (2n + 1)xyn + 1– (n2 + a2)yn = 0. 6

UNIT—II

2. (A) Expand log (1 + x) by Maclaurin’s Theorem. 6

(B) Find the radius of curvature at any point on the curve :

x = a(cos t + t sin t), y = a(sin t – t cos t). 6

OR
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(C) Find the asymptotes of the cubic curve :

2x3 – x2y + 2xy2 + y3 – 4x2 + 8xy – 4x + 1 = 0. 6

(D) Determine :
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UNIT—III

3. (A) If [ ] ;zyx(u
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(B) Find 
dt
dz

 when, z = xy2 + x2y, x = at2 ; y = 2at. Verify the result by direct substitution. 6

OR

(C) If z = f(x, y) be a homogeneous function of degree n, then prove that :
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(D) If x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ, then show that :
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UNIT—IV

4. (A) Evaluate ∫
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(B) Evaluate ∫
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(C) Prove that ∫ ∫ −
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(D) Show that :

∫
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UNIT—V

5. (A) Show that the function f(x) = (1 + 3x)1/x when x ≠ 0, f(0) = e3 is continuous for x = 0. 1½

(B) Show that f(x) = x | x | is derivable at x = 0. 1½

(C) Expand f(x) = 5x2 – 7x + 2 in powers of (x – 1). 1½

(D) Determine .
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(E) If z = e2x sin 3y, find 
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(G) Show that .
2
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(H) Evaluate .dx
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